NORTHERN ARIZONA UNIVERSITY

Solis Fur (Sun Thief)

F1820 Solar Plane

The Team

Brandon Beaudoin (Project Manager)

Michael Broyles (Website Designer)

Nathan Zufelt (Budget Manager) Ethan Smith (Client Contact) Jonathan Hernandez (Documentation Manager)

10/22/2018

Project Concept

Explore the use of engineering principles to design and build a solar powered RC aircraft capable of sustaining indefinite flight while the sun is out.

Plane Schematic [8]

10/22/2018 Michael Broyles

Project Sponsor / Customer

David Trevas, PhD

- Provided customer requirements.
- Crucial inputter in design requirements.

Sponsors

- Novakinetics AeroSystems
- Prometheus Solar
- Flagstaff Flyers

Why is this important?

- Teaches students to use engineering principles in a real life application.
- Allows the use of renewable energy to power an RC plane.

Black Box Model

10/22/2018 Nathan Zufelt

Decomposition Model

Aircraft Selection

Solar Blimp

Advantages:Disadvantages:Positive BuoyancyControlSimplified ElectronicsSurface Area (Power)

Solar Quadcopter

Advantages:Disadvantages:Vertical TakeoffSurface AreaManeuverabilityComplex Design

Solar Delta-Wing Plane

<u>Advantages:</u>	Disadvantages:
Surface Area	Increase Drag
Manufacturable	Size Constraints
Styrofoam)	

10/22/2018 Jonathan Hernandez

Aircraft Selection

<u>Glider</u>

<u>Advantages:</u> Low Drag High Efficiency <u>Disadvantages:</u> Low Maneuverability Fragile

10/22/2018 Jonathan Hernandez

Airfoil Selection

Airfoil Pugh Chart									
Criteria	Weight	4412 (Datum)	rhodesg32-il		Clark Y		NACA 643618		
Max Lift	2	D	2		-	-2	-	-2	
Lift $\alpha = 0$	2	D	+	2	-	-2	-	-2	
Max Drag (Aerodynamic)	1	D	-	-1	-	-1	-	-1	
Induced Drag	1	D	+	1	+	1	+	1	
Total Wing Drag	2	D	-	-2	-	-2	-	-2	
Ease of manufacturing	2 D		+	2	-	-2	-	-2	
nferred	Sum	0	0	0	-4	-8	-4	-8	
	Rank	2	1		3		3		

Reasons for selected weights					
2	Critical to flight				
1	Infuential but not critical				

10/22/2018 Ethan Smith

Wing Location Selection

Wing Location Pugh Chart									
Criteria	Weight	Mid (Datum)	Upper		Lower				
Weight	2	D	1 2		1	2			
Lift	2	D	1	2	1	2			
Stall Speed	Stall Speed 2 D		1	2	-1	-2			
Stability	ility 1 D		1	1	-1	-1			
Frontal Area	1	D	-1 -1		1	1			
Drag	1	D	0 0		1	1			
Pitch Moment	1	D	1	1	-1	-1			
Cost	1	D	1	1	1	1			
Ease of manufacturing	1	D	1	1	1	1			
Versatility	1	D	1	1	1	1			
Inferred	Sum	0	7	10	4	5			
Does not pertain to project Rank 3 1 2						2			

Proposed Testing

Solar Panels:

- Analyze solar ouput
- Helps quantify available power
- Help determine the correct panel orientation

Motors/Propellors:

- Helps determine thrust capabilities
- Helps determine cruise speed
- Optimize propellor : motor size

Component Selection

Components:

- Motor
- Prop Size
- Speed Controller
- Electrical Layout

Proposed Design

Specifications:

- Wing span: 13.25ft
- Weight: <8lbs
- Number of solar cells: 60
- Flight duration: Indefinite

SolidWorks Rendering of Proposed Plane

10/22/2018 Michael Broyles

Proposed Design

NORTHER

Schedule

G		\rightarrow	>	2018	_	_	
Name	Project	Regin date	End date	September	October	November	December
i same	Pasaarch	0/6/18	5/10/19		10/0/18		
~	Design	9/0/18	12/14/19		10/9/18		
~	Design	9/0/10	12/14/10 E/10/10				
-	Build	1/15/19	5/10/19				
0	Meet the TA	9/6/18	12/14/18				_
•	Team Charter	9/6/18	9/12/18				
۲	Website Check 1	10/1/18	10/5/18				
•	Peer Evaluation 1	10/8/18	10/12/18				
•	Analysis Memo	10/8/18	10/19/18				
0	Website Check 2	10/10/18	10/18/18				
0	Preliminary Report	10/19/18	10/26/18				
•	Test Motors and Panels	11/1/18	11/20/18				
•	Analytical Report	11/5/18	11/16/18				
0	Peer Evaluation 2	11/12/18	11/23/18				
0	Final Report	11/12/18	11/23/18	_			
0	Prototype, BOM, Cad	11/26/18	12/7/18	-			
0	Website Check 3	12/3/18	12/14/18				
•	Peer Evaluation 3	12/3/18	12/14/18				
							NORTHERN ARIZONA UNIVERSITY®

15

Budget

- Total budget \$2500
- Recently purchased
 - Controller \$235
 - Solar Cells \$360
 - Solar cell connectors \$20
- Remaining Budget \$1885

	Price	Quantity	Units	Cost	Price per unit	Weight per unit	Units	Total Weight	Weight (lbs)
Plane Components									
C60 Solar panels	\$360.00	1	80	\$360.00	\$4.50	10	grams	800	1.76
Sunpower dog bone connector	\$9.99	2	100	\$19.98	\$0.20			0	0.00
Carbon Tail tubing (0.793 x 72in)	\$225	1	1	\$224.99	\$224.99	1.02	lbs	1.02	1.02
Carbon Wing struts (0.38 x 72in)	\$70	4	4	\$279.96	\$69.99	131.5	grams	526	1.16
Carbon Sheets (200x300x2mm)	\$20	10	10	\$198.60	\$19.86	97	grams	970	2.14
Clear UltraCote	\$29	3	3	\$87.00	\$29.00	36.61821	grams	109.85463	0.24
OS 10 motor	\$89	1	1	\$89.00	\$89.00	102	grams	102	0.22
Zeee 3S Lipo Battery 11.1V 50C 5200mAh	\$37	1	1	\$36.99	\$36.99	11.6	oz	11.6	0.73
Place holder (Servos)									
Tunigy Speed Controller	\$96	1	1	\$96.00	\$96.00	60	grams	60	0.13
Place holder (Propeller)									
Place holder (Tail wing?)									
			Gro	ound Equipment					
FrSky Taranis X9D Transmitter	\$234	1	1	\$234.00	\$234.00			0	0
FrSky Taranis Compatible Receiver X8R 8-	\$35	1	1	\$34.50	\$34.50			0	0
FrSky X4RSB 3/16CH Telemetry Receiver	\$32	1	1	\$31.99	\$31.99			0	0
Connex ProSight HD Vision Pack	\$399	1	1	\$399.00	\$399.00	66	grams	66	0.15
Zeee 3S Lipo Battery 11.1V 50C 5200mAh	\$37	1	1	\$36.99	\$36.99	11.6	OZ	11.6	0.73
			Total	\$2,129.00				Total Weight	8.28

References

- [1] "Solar Plane Passes New Test," Financial Tribune, 03 March 2015. [Online]. Available: https://financialtribune.com/articles/energy/12392/solar-plane-passes-new-test.
- [2] [Online]. Available: https://www.theguardian.com/environment/2016/jul/26/solar-impulse-plane-makes-history-completing-round-the-world-trip.
- [3] RCTESTFLIGHT, "Youtube," RCTESTFLIGHT, 24 June 2017. [Online]. Available: https://www.youtube.com/watch?v=CmjY6cHafsU. [Accessed 9 September 2018].
- [4]G. Vega, "ULSA About", Cefns.nau.edu, 2018. [Online]. Available: https://www.cefns.nau.edu/capstone/projects/ME/2017/SAEAeroRegular/About.html. [Accessed: 22- Sep- 2018].
- [5] [Online]. Available: https://www.amazon.com/dp/B01C6B1EQO/?coliid=I145XQ0LTRVO0V&colid=3FUK3ANG2AN0V&psc=0&ref_=lv_ov_lig_dp_it
- [6] [Online]. Available: http://www.hangarone.co.nz/os-10-size-333-watt-motor-oma38101050-p-5458.html
- [7] [Online]. Available: https://www.amazon.com/dp/B078K2W2TY/ref=twister_B078KCXF86?_encoding=UTF8&th=1
- [8] "Free Vector," [Online]. Available: https://www.freevector.com/airplanes-blueprint-19757. [Accessed 24 September 2018].
- [9] Glider, [Online]. Available: https://aviation.stackexchange.com/questions/21112/why-can-gliders-fly-for-so-long
- [10] "Thrust Testing", [Online]. Available: https://www.rcgroups.com/forums/showthread.php?1827301-Super-Simple-Test-Bench-for-motors-and-props

Questions?

10/22/2018